6 research outputs found

    Shaping the Future of Animation towards Role of 3D Simulation Technology in Animation Film and Television

    Get PDF
    The application of 3D simulation technology has revolutionized the field of animation film and television art, providing new possibilities and creative opportunities for visual storytelling. This research aims to explore the various aspects of applying 3D simulation technology in animation film and television art. It examines how 3D simulation technology enhances the creation of realistic characters, environments, and special effects, contributing to immersive and captivating storytelling experiences. The research also investigates the technical aspects of integrating 3D cloud simulation technology into the animation production pipeline, including modeling, texturing, rigging, and animation techniques. This paper explores the application of these optimization algorithms in the context of cloud-based 3D environments, focusing on enhancing the efficiency and performance of 3D simulations. Black Widow and Spider Monkey Optimization can be used to optimize the placement and distribution of 3D assets in cloud storage systems, improving data access and retrieval times. The algorithms can also optimize the scheduling of rendering tasks in cloud-based rendering pipelines, leading to more efficient and cost-effective rendering processes. The integration of 3D cloud environments and optimization algorithms enables real-time optimization and adaptation of 3D simulations. This allows for dynamic adjustments of simulation parameters based on changing conditions, resulting in improved accuracy and responsiveness. Moreover, it explores the impact of 3D cloud simulation technology on the artistic process, examining how it influences the artistic vision, aesthetics, and narrative possibilities in animation film and television. The research findings highlight the advantages and challenges of using 3D simulation technology in animation, shedding light on its potential future developments and its role in shaping the future of animation film and television art

    Quantification of host proteomic responses to genotype 4 hepatitis E virus replication facilitated by pregnancy serum

    No full text
    Abstract Background Hepatitis E virus (HEV) infection is a common cause of acute hepatitis worldwide and causes approximately 30% case fatality rate among pregnant women. Pregnancy serum (PS), which contains a high concentration of estradiol, facilitates HEV replication in vitro through the suppression of the PI3K–AKT–mTOR and cAMPK–PKA–CREB signaling pathways. However, the proteomics of the complex host responses to HEV infection, especially how PS facilitates viral replication, remains unclear. Methods In this study, the differences in the proteomics of HEV-infected HepG2 cells supplemented with fetal bovine serum (FBS) from those of HEV-infected HepG2 cells supplemented with serum from women in their third trimester of pregnancy were quantified by using isobaric tags for relative and absolute quantification technology. Results A total of 1511 proteins were identified, among which 548 were defined as differentially expressed proteins (DEPs). HEV-infected cells supplemented with PS exhibited the most significant changes at the protein level. A total of 328 DEPs, including 66 up-regulated and 262 down-regulated proteins, were identified in HEV-infected cells supplemented with FBS, whereas 264 DEPs, including 201 up-regulated and 63 down-regulated proteins, were found in HEV-infected cells supplemented with PS. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that in HEV-infected cells, PS supplementation adjusted more host genes and signaling pathways than FBS supplementation. The DEPs involved in virus–host interaction participated in complex interactions, especially a large number of immune-related protein emerged in HEV-infected cells supplemented with PS. Three significant or interesting proteins, including filamin-A, thioredoxin, and cytochrome c, in HEV-infected cells were functionally verified. Conclusions The results of this study provide new and comprehensive insight for exploring virus–host interactions and will benefit future studies on the pathogenesis of HEV in pregnant women
    corecore